
PROBLEM SOLUTION

Lightweight Automatic Generation of
Traceability Information

A general technique for deriving traceability
relations for automatically generated code,
treating the code generator as a black box.
The technique can also be applied to other
kinds of automatic generation.

Traceability relations between requirements and
code are generally derived manually, and must be
manually updated when software or requirements
change, requiring effort and expertise. The effort
can be reduced when code is automatically
generated, but this requires substantial
modification to the code generator.

TECHNOLOGY

Specification Program
Synthesis generates lines of program
code (blue, right) from lines of
specification (blue, left).
Technique detects synthesized program
changes (red, right) which result from
specification changes (orange, left).
Arrows denote derived traceability links.

Explanation of Accomplishment
• POC: Julian Richardson (ASE Group, Code IC, julianr@email.arc.nasa.gov)
• Work funded by: ITSR Certifiable Program Synthesis.
• Background: Tracing from a program’s requirements to the parts of the program which

implement those requirements is important – by linking related artifacts in a software
development, it can help to ensure that consistency is maintained as the software evolves, and
help to pinpoint software errors. Traceability is required by the avionics standard DO-178B.
Programmers input traceability information manually into tools such as DOORS. This information
is hard to derive, requiring understanding of both problem domain and program, and hard to
maintain when the program or requirements change. Synthesis systems and compilers can be
extended to derive traceability information in parallel with the synthesis/compilation process, but
this has previously required extensive modification of the entire synthesis system.

• Accomplishment: We have developed a new, very lightweight technique for deriving traceability
information which works with any kind of automatic generation process. The technique observes
the differences induced in the synthesized program when small changes are made to its
specification. Lines of the synthesized program are annotated with the lines of the specification
which affected them. The technique can be implemented in less than 100 lines of code. We have
demonstrated its flexibility by applying it both to program synthesis (AutoFilter – input:
specifications, output: C code), and to compilation (GCC – input: C code, output: assembler
code). The results were presented at the 2nd International Workshop on Traceability in Emerging
Forms of Software Engineering (TEFSE’03) October 7, 2003.

• Benefits: We enable traceability information to be derived from any automatic (program)
generation process without needing substantial modification or understanding of the generating
system.

• Future Work: The technique currently relies on the user to provide the small changes which are
made to the input specification. We will examine possibilities for automating generation of these
changes. In the case that several artifacts are generated from a single specification, the
technique may allow deriving linkages between those artifacts. For example, we may be able to
tie generated program statements to generated proof obligations during program certification.
Currently, the derived traceability information maps lines of generated code to corresponding lines
of specification. We will investigate partitioning lines of specification into individual requirements
so that we can trace directly to requirements rather than to individual specification lines.

mailto:julianr@email.arc.nasa.gov

